The Cauchy problem for doubly degenerate parabolic equations with weights

We consider the Cauchy problem in the Euclidean space for a doubly degenerate parabolic equation with a space-dependent exponential weight, roughly speaking of the type of the exponential of a power of the distance from the origin. We assume here the solutions of the Cauchy problem to be globally in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Andreucci, Daniele, Tedeev, Anatoli F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem in the Euclidean space for a doubly degenerate parabolic equation with a space-dependent exponential weight, roughly speaking of the type of the exponential of a power of the distance from the origin. We assume here the solutions of the Cauchy problem to be globally integrable in space (in the appropriate weighted sense) and non-negative. Under suitable assumptions, we prove for the solutions sup estimates, i.e., the decay rate at infinity, the property of finite speed of propagation and support estimates. All our estimates are given explicitly in terms of the weight appearing in the equation.
ISSN:2331-8422