A Note on the (p, q)-Derivative Operator

In this note, for the ( p ,  q )-derivative operator D p , q defined by D p , q f ( x ) = f ( p x ) - f ( q x ) ( p - q ) x if x ≠ 0 ; f ′ ( 0 ) , if x = 0 . , where p ≠ q , we investigate the following property: ( D p , q n f ) ( 0 ) = lim x → 0 D p , q n f ( x ) = f ( n ) ( 0 ) ( ( p , q ) ; ( p ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2024, Vol.10 (6), Article 172
1. Verfasser: Oussi, Lahcen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, for the ( p ,  q )-derivative operator D p , q defined by D p , q f ( x ) = f ( p x ) - f ( q x ) ( p - q ) x if x ≠ 0 ; f ′ ( 0 ) , if x = 0 . , where p ≠ q , we investigate the following property: ( D p , q n f ) ( 0 ) = lim x → 0 D p , q n f ( x ) = f ( n ) ( 0 ) ( ( p , q ) ; ( p , q ) ) n n ! ( p - q ) n = f ( n ) ( 0 ) [ n ] p , q ! n ! , n ∈ { 1 , 2 , … } , for which f ( n ) ( 0 ) exists. The real variable and the complex variable cases are considered. Specializing to the case p = 1 , we recover the property for the q -derivative operator as obtained by J. Koekoek and R. Koekoek in 1993, in related paper. Furthermore, some applications were discussed.
ISSN:2349-5103
2199-5796
DOI:10.1007/s40819-024-01800-x