Real-Time Lightweight Video Super-Resolution With RRED-Based Perceptual Constraint
Real-time video services are gaining popularity in our daily life, yet limited network bandwidth can constrain the delivered video quality. Video Super Resolution (VSR) technology emerges as a key solution to enhance user experience by reconstructing high-resolution (HR) videos. The existing real-ti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2024-10, Vol.34 (10), p.10310-10325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real-time video services are gaining popularity in our daily life, yet limited network bandwidth can constrain the delivered video quality. Video Super Resolution (VSR) technology emerges as a key solution to enhance user experience by reconstructing high-resolution (HR) videos. The existing real-time VSR frameworks have primarily emphasized spatial quality metrics like PSNR and SSIM, which often lack consideration of temporal coherence, a critical factor for accurately reflecting the overall quality of super-resolved videos. Inspired by Video Quality Assessment (VQA) strategies, we propose a dual-frame training framework and a lightweight multi-branch network to address VSR processing in real time. Such designs thoroughly leverage the spatio-temporal correlations between consecutive frames so as to ensure efficient video restoration. Furthermore, we incorporate ST-RRED, a powerful VQA approach that separately measures spatial and temporal consistency aligning with human perception principles, into our loss functions. This guides us to synthesize quality-aware perceptual features across both space and time for realistic reconstruction. Our model demonstrates remarkable efficiency, achieving near real-time processing of 4K videos. Compared to the state-of-the-art lightweight model MRVSR, ours is more compact and faster, 60% smaller in size (0.483M vs. 1.21M parameters), and 106% quicker (96.44fps vs. 46.7fps on 1080p frames), with significantly improved perceptual quality. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2024.3405827 |