Application of Digital Image Correlation to Small Punch Test for Determination of Stress–Strain Properties

The analysis of the small punch test is based on the force on the moving punch and the deflection data acquired at a single point of the specimen bottom. However, the spatial distribution of stress and strain at any given instant is non-uniform and its variations with increase in punch penetration a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Indian Institute of Metals 2024-11, Vol.77 (11), p.3879-3892
Hauptverfasser: Shaik, Abdul Rahman, Pandey, Aishwary Vardhan, Karthik, V., Kolhatkar, Ashish, Abhishek, G., Divakar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The analysis of the small punch test is based on the force on the moving punch and the deflection data acquired at a single point of the specimen bottom. However, the spatial distribution of stress and strain at any given instant is non-uniform and its variations with increase in punch penetration are quite complex. In this work, the digital image correlation (DIC) technique is integrated with small punch test for in-situ full field strain measurement in the bottom surface of the specimen. The DIC results reveal that with the progression of deformation, the peak equivalent plastic strain at the bottom surface shifts from the center of the specimen to a characteristic radial location, where the strain rapidly builds up and concentrates leading to instability and cracking. Combining DIC-based strain results with finite element model-based stress estimation at the characteristic radial location, a methodology for determining the stress–strain curve from small punch test is formulated and the outcomes are compared with tensile test results for four different metallic alloys.
ISSN:0972-2815
0975-1645
DOI:10.1007/s12666-024-03442-5