A Novel Hot Compaction of Aluminum/Graphene Composite coated with Nano-silver
This research aimed to achieve three main objectives: studying the effect of milling time on graphite exfoliation, reducing fabrication heating time to prevent aluminum carbide formation, and investigating the impact of (alumina/graphene)/silver on aluminum properties. Four aluminum nanocomposites w...
Gespeichert in:
Veröffentlicht in: | Transactions of the Indian Institute of Metals 2024-11, Vol.77 (11), p.3769-3780 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research aimed to achieve three main objectives: studying the effect of milling time on graphite exfoliation, reducing fabrication heating time to prevent aluminum carbide formation, and investigating the impact of (alumina/graphene)/silver on aluminum properties. Four aluminum nanocomposites were produced using cold and hot pressing at 560 °C for 50 min under 1000 MPa. Raman analysis confirmed graphite exfoliation with alumina to graphene after 40 h of milling. The hot-pressed aluminum-5(alumina/graphene)/10 silver exhibited the smallest crystallite size at 79.926 nm and the highest hardness at 61 HV. It also demonstrated the lowest wear rate under different applied loads (45 and 90 N). The coefficient of friction was measured under 90 N, revealing the lowest mean coefficient of friction of 0.5 for aluminum-5(alumina/graphene)/10 silver, attributed to the presence of graphene and silver as solid lubricants. Aluminum/(alumina/graphene) showed superior corrosion resistance in the absence of silver, reducing the corrosion rate from 0.01 mm/year for pure aluminum to 0.0073 mm/year with the addition of 5 (alumina/graphene). The aluminum-5(alumina/graphene)/10 silver recorded a corrosion rate of 0.0114 mm/year. |
---|---|
ISSN: | 0972-2815 0975-1645 |
DOI: | 10.1007/s12666-024-03437-2 |