Concentration of Normalized Solutions for Mass Supercritical Kirchhoff Type Equations
In this paper, we study the existence and concentration behavior of normalized positive solutions to the following L 2 -supercritical Kirchhoff type equation - a ε 2 + b ε ∫ R 3 | ∇ v | 2 d x Δ v + λ v = K ( x ) | v | p - 2 v , x ∈ R 3 , ∫ R 3 | v | 2 d x = m ε 3 , v ∈ H 1 ( R 3 ) , where a , b , m...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2025, Vol.35 (1), Article 3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the existence and concentration behavior of normalized positive solutions to the following
L
2
-supercritical Kirchhoff type equation
-
a
ε
2
+
b
ε
∫
R
3
|
∇
v
|
2
d
x
Δ
v
+
λ
v
=
K
(
x
)
|
v
|
p
-
2
v
,
x
∈
R
3
,
∫
R
3
|
v
|
2
d
x
=
m
ε
3
,
v
∈
H
1
(
R
3
)
,
where
a
,
b
,
m
>
0
,
p
∈
14
3
,
6
,
ε
is a small positive parameter,
K
is a positive continuous function possessing a local maximum point and
λ
∈
R
will arise as a Lagrange multiplier. We construct a family of positive normalized solutions
v
ε
∈
H
1
(
R
3
)
which concentrates around the local maximum of
K
as
ε
→
0
by using a combination of the variational approach and a penalization technique. Moreover, we also give the expression of the approximation solutions. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01840-1 |