Concentration of Normalized Solutions for Mass Supercritical Kirchhoff Type Equations

In this paper, we study the existence and concentration behavior of normalized positive solutions to the following L 2 -supercritical Kirchhoff type equation - a ε 2 + b ε ∫ R 3 | ∇ v | 2 d x Δ v + λ v = K ( x ) | v | p - 2 v , x ∈ R 3 , ∫ R 3 | v | 2 d x = m ε 3 , v ∈ H 1 ( R 3 ) , where a , b , m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2025, Vol.35 (1), Article 3
Hauptverfasser: Ni, Yangyu, Sun, Jijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the existence and concentration behavior of normalized positive solutions to the following L 2 -supercritical Kirchhoff type equation - a ε 2 + b ε ∫ R 3 | ∇ v | 2 d x Δ v + λ v = K ( x ) | v | p - 2 v , x ∈ R 3 , ∫ R 3 | v | 2 d x = m ε 3 , v ∈ H 1 ( R 3 ) , where a , b , m > 0 , p ∈ 14 3 , 6 , ε is a small positive parameter, K is a positive continuous function possessing a local maximum point and λ ∈ R will arise as a Lagrange multiplier. We construct a family of positive normalized solutions v ε ∈ H 1 ( R 3 ) which concentrates around the local maximum of K as ε → 0 by using a combination of the variational approach and a penalization technique. Moreover, we also give the expression of the approximation solutions.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01840-1