Nonlinear stability in a free boundary model of active locomotion
Contraction-driven self-propulsion of a large class of living cells can be modeled by a Keller-Segel system with free boundaries. The ensuing "active" system, exhibiting both dissipation and anti-dissipation, features stationary and traveling wave solutions. While the former represent stat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contraction-driven self-propulsion of a large class of living cells can be modeled by a Keller-Segel system with free boundaries. The ensuing "active" system, exhibiting both dissipation and anti-dissipation, features stationary and traveling wave solutions. While the former represent static cells, the latter describe propagating pulses (solitary waves) mimicking the autonomous locomotion of the same cells. In this paper we provide the first proof of the asymptotic nonlinear stability of both of such solutions, static and dynamic. In the case of stationary solutions, the linear stability is established using the spectral theorem for compact, self-adjoint operators, and thus linear stability is determined classically, solely by eigenvalues. For traveling waves the picture is more complex because the linearized problem is non-self-adjoint, opening the possibility of a "dark" area in the phase space which is not "visible" in the purely eigenvalue/eigenvector approach. To establish linear stability in this case we employ spectral methods together with the Gearhart-Pruss-Greiner (GPG) theorem, which controls the entire spectrum via bounds on the resolvent operator. For both stationary and traveling wave solutions, nonlinear stability is then proved by showing how the nonlinear part of the problem may be dominated by the linear part and then employing a Gronwall inequality argument. The developed novel methodology can prove useful also in other problems involving non-self-adjoint (non-Hermitian or non-reciprocal) operators which are ubiquitous in the modeling of "active" matter. |
---|---|
ISSN: | 2331-8422 |