Micromotors Driven by Spin-Orbit Interaction of Light: Mimicking Planetary Motion at the Microscale
We introduce a new class of optical micromotors driven by the spin-orbit interaction of light and spin-driven fluid flows leading to simultaneous rotation and revolution of the micromotors. The micromotors are essentially birefringent liquid crystal particles (LC) that can efficiently convert the an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new class of optical micromotors driven by the spin-orbit interaction of light and spin-driven fluid flows leading to simultaneous rotation and revolution of the micromotors. The micromotors are essentially birefringent liquid crystal particles (LC) that can efficiently convert the angular momentum of light into high-frequency rotational motion. By tightly focusing circularly polarized Gaussian beams through a high numerical aperture objective into a refractive index stratified medium, we create a spherically aberrated intensity profile where the spinning motion of a micromotor optically trapped at the centre of the profile induces fluid flows that causes orbiting motion of the off-axially trapped surrounding particles (secondary micromotors). In addition, the interaction between the helicity of light and the anisotropic properties of the LC medium leads to the breaking of the input helicity and drives the conversion of right to left-circular polarization and vice-versa. This spin-to-spin conversion, causes the orbiting secondary micromotors to spin in certain cases as well so that the entire system of spinning primary micromotor and revolving and spinning secondary micromotors is reminiscent of planetary motion at mesoscopic scales. Our findings, supported by both theoretical modeling and experimental validation, advance the understanding of light-matter interactions at the microscale. |
---|---|
ISSN: | 2331-8422 |