Quantum computing and persistence in topological data analysis

Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Casper Gyurik, Schmidhuber, Alexander, King, Robbie, Dunjko, Vedran, Hayakawa, Ryu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scales -- is \(\mathsf{BQP}_1\)-hard and contained in \(\mathsf{BQP}\). This result implies an exponential quantum speedup for this problem under standard complexity-theoretic assumptions. Our approach relies on encoding the persistence of a hole in a variant of the guided sparse Hamiltonian problem, where the guiding state is constructed from a harmonic representative of the hole.
ISSN:2331-8422