Quantum computing and persistence in topological data analysis
Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scal...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scales -- is \(\mathsf{BQP}_1\)-hard and contained in \(\mathsf{BQP}\). This result implies an exponential quantum speedup for this problem under standard complexity-theoretic assumptions. Our approach relies on encoding the persistence of a hole in a variant of the guided sparse Hamiltonian problem, where the guiding state is constructed from a harmonic representative of the hole. |
---|---|
ISSN: | 2331-8422 |