Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments

The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Su, Zhe, Chang-Han, Rhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Su, Zhe
Chang-Han, Rhee
description The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-tailed) Weibull-type increments. This leaves the lognormal case -- one of the three most prominent classes of heavy-tailed distributions, alongside regular variation and Weibull -- open. This article establishes the \emph{extended large deviation principle} (extended LDP) at the sample-path level for one-dimensional Lévy processes and random walks with lognormal-type increments. Building on these results, we also establish the extended LDPs for multi-dimensional processes with independent coordinates. We demonstrate the sharpness of these results by constructing counterexamples, thereby proving that our results cannot be strengthened to a standard LDP under \(J_1\) topology and \(M_1'\) topology.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121790361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121790361</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217903613</originalsourceid><addsrcrecordid>eNqNi0sKwjAURYMgWLR7eOC40CZ-x35Q6KCo4MCBhPrU1nw0L1ZckutwY1ZwAU7uGZxzGyzgQiTRqMd5i4VEZRzHfDDk_b4I2G4t9VVhlEl_hlS6E8IUq0L6whqCo3WQvl_VEzJncyRCAmkOsKrHathKdSF4FN-rPRnrtFSwNLlDjcZThzWPUhGGP7ZZdz7bTBbR1dnbHcnvS3t3plZ7kfBkOI7FIBH_VR-cpkNZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121790361</pqid></control><display><type>article</type><title>Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments</title><source>Free E- Journals</source><creator>Su, Zhe ; Chang-Han, Rhee</creator><creatorcontrib>Su, Zhe ; Chang-Han, Rhee</creatorcontrib><description>The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-tailed) Weibull-type increments. This leaves the lognormal case -- one of the three most prominent classes of heavy-tailed distributions, alongside regular variation and Weibull -- open. This article establishes the \emph{extended large deviation principle} (extended LDP) at the sample-path level for one-dimensional Lévy processes and random walks with lognormal-type increments. Building on these results, we also establish the extended LDPs for multi-dimensional processes with independent coordinates. We demonstrate the sharpness of these results by constructing counterexamples, thereby proving that our results cannot be strengthened to a standard LDP under \(J_1\) topology and \(M_1'\) topology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deviation ; Random walk ; Topology</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Su, Zhe</creatorcontrib><creatorcontrib>Chang-Han, Rhee</creatorcontrib><title>Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments</title><title>arXiv.org</title><description>The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-tailed) Weibull-type increments. This leaves the lognormal case -- one of the three most prominent classes of heavy-tailed distributions, alongside regular variation and Weibull -- open. This article establishes the \emph{extended large deviation principle} (extended LDP) at the sample-path level for one-dimensional Lévy processes and random walks with lognormal-type increments. Building on these results, we also establish the extended LDPs for multi-dimensional processes with independent coordinates. We demonstrate the sharpness of these results by constructing counterexamples, thereby proving that our results cannot be strengthened to a standard LDP under \(J_1\) topology and \(M_1'\) topology.</description><subject>Deviation</subject><subject>Random walk</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAURYMgWLR7eOC40CZ-x35Q6KCo4MCBhPrU1nw0L1ZckutwY1ZwAU7uGZxzGyzgQiTRqMd5i4VEZRzHfDDk_b4I2G4t9VVhlEl_hlS6E8IUq0L6whqCo3WQvl_VEzJncyRCAmkOsKrHathKdSF4FN-rPRnrtFSwNLlDjcZThzWPUhGGP7ZZdz7bTBbR1dnbHcnvS3t3plZ7kfBkOI7FIBH_VR-cpkNZ</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Su, Zhe</creator><creator>Chang-Han, Rhee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments</title><author>Su, Zhe ; Chang-Han, Rhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217903613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deviation</topic><topic>Random walk</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Su, Zhe</creatorcontrib><creatorcontrib>Chang-Han, Rhee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zhe</au><au>Chang-Han, Rhee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-tailed) Weibull-type increments. This leaves the lognormal case -- one of the three most prominent classes of heavy-tailed distributions, alongside regular variation and Weibull -- open. This article establishes the \emph{extended large deviation principle} (extended LDP) at the sample-path level for one-dimensional Lévy processes and random walks with lognormal-type increments. Building on these results, we also establish the extended LDPs for multi-dimensional processes with independent coordinates. We demonstrate the sharpness of these results by constructing counterexamples, thereby proving that our results cannot be strengthened to a standard LDP under \(J_1\) topology and \(M_1'\) topology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3121790361
source Free E- Journals
subjects Deviation
Random walk
Topology
title Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sample-Path%20Large%20Deviations%20for%20L%C3%A9vy%20Processes%20and%20Random%20Walks%20with%20Lognormal%20Increments&rft.jtitle=arXiv.org&rft.au=Su,%20Zhe&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121790361%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121790361&rft_id=info:pmid/&rfr_iscdi=true