Sample-Path Large Deviations for Lévy Processes and Random Walks with Lognormal Increments
The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for Lévy processes and random walks with regularly varying and (heavy-tailed) Weibull-type increments. This leaves the lognormal case -- one of the three most prominent classes of heavy-tailed distributions, alongside regular variation and Weibull -- open. This article establishes the \emph{extended large deviation principle} (extended LDP) at the sample-path level for one-dimensional Lévy processes and random walks with lognormal-type increments. Building on these results, we also establish the extended LDPs for multi-dimensional processes with independent coordinates. We demonstrate the sharpness of these results by constructing counterexamples, thereby proving that our results cannot be strengthened to a standard LDP under \(J_1\) topology and \(M_1'\) topology. |
---|---|
ISSN: | 2331-8422 |