A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope

A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar Dst -indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomagnetism and Aeronomy 2024-10, Vol.64 (5), p.701-716
Hauptverfasser: Getmanov, V. G., Gvishiani, A. D., Soloviev, A. A., Zaitsev, K. S., Dunaev, M. E., Yekhlakov, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar Dst -indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.
ISSN:0016-7932
1555-645X
0016-7940
DOI:10.1134/S0016793224600644