Nonlinear instability and solitons in a self‐gravitating fluid

We study a spherical, self‐gravitating fluid model, which finds applications in cosmic structure formation. We argue that since the system features nonlinearity and gravity‐induced dispersion, the emergence of solitons becomes possible. We thus employ a multiscale expansion method to study, in the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-11, Vol.47 (16), p.12388-12404
Hauptverfasser: Koutsokostas, Georgios N., Sypsas, Spyros, Evnin, Oleg, Horikis, Theodoros P., Frantzeskakis, Dimitrios J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a spherical, self‐gravitating fluid model, which finds applications in cosmic structure formation. We argue that since the system features nonlinearity and gravity‐induced dispersion, the emergence of solitons becomes possible. We thus employ a multiscale expansion method to study, in the weakly nonlinear regime, the evolution of small‐amplitude perturbations around the equilibrium state. This way, we derive a spherical nonlinear Schrödinger (NLS) equation that governs the envelope of the perturbations. The effective NLS description allows us to predict a “nonlinear instability” (occurring in the nonlinear regime of the system), namely, the modulational instability, which, in turn, may give rise to spherical soliton states. The latter feature a very slow (polynomial) curvature‐induced decay in time. The soliton profiles may be used to describe the shape of dark matter halos at the rims of the galaxies.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9912