A note on energy and cross‐helicity conservation in the ideal magnetohydrodynamic equations
In this paper, we are concerned with the conservation of total energy and cross‐helicity for the weak solutions in the ideal magnetohydrodynamic (MHD) equations. In the spirit of recent works of Berselli (J. Differ. Equ. 368 (2023), 350–375.) and Berselli‐Georgiadis (NoDEA Nonlinear Differ. Equ. App...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-11, Vol.47 (16), p.12871-12882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we are concerned with the conservation of total energy and cross‐helicity for the weak solutions in the ideal magnetohydrodynamic (MHD) equations. In the spirit of recent works of Berselli (J. Differ. Equ. 368 (2023), 350–375.) and Berselli‐Georgiadis (NoDEA Nonlinear Differ. Equ. Appl. 31 (2024), 33), by establishing a new generalized Constantin‐E‐Titi type commutator estimate to allow us to make full use of the total energy, we extend the previous classical results to a wider range of exponents. These results indicate the role of the time integrability, spatial integrability, and differential regularity of the velocity (magnetic field) in the conserved quantities of weak solutions in the ideal MHD equations. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10184 |