Probabilistic model for high-level intention estimation and trajectory prediction in urban environments

To enable successful automated driving, precise behavior prediction of surrounding vehicles is indispensable in urban traffic scenarios. Furthermore, given that a vehicle’s behavior is influenced by the movements of other road users, it becomes crucial to estimate their intentions to anticipate prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2024, Vol.29 (4), p.557-566
Hauptverfasser: Bok, Yunsoo, Suganuma, Naoki, Yoneda, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enable successful automated driving, precise behavior prediction of surrounding vehicles is indispensable in urban traffic scenarios. Furthermore, given that a vehicle’s behavior is influenced by the movements of other road users, it becomes crucial to estimate their intentions to anticipate precise future motion. However, the elevated complexity resulting from interdependencies among traffic participants and the uncertainty arising from the object recognition errors present additional challenges. Despite extensive research on inferring intentions, many studies have concentrated on estimating intentions from interactions, resulting in a lack of practicality in urban traffic environments due to low computational efficiency and low robustness against recognition failure of strongly interacting road users. In this paper, we introduce a practical stochastic model for intention estimation and trajectory prediction of surrounding vehicles in automated driving under urban traffic environments. The trajectory is forecasted based on hierarchically computed and probabilistically estimated intentions, which represent an interpretation of vehicle behavior, utilizing only the kinematic state of the focal vehicle and HD maps to ensure real-time performance and enhance robustness. The evaluated results demonstrate that the proposed model surpasses straightforward methods in terms of accuracy while maintaining computational efficiency and exhibits robustness against the recognition failure of traffic participants which strongly influence the focal vehicle.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-024-00973-4