The Green Indium Patented Technology SCRIPT, for Indium Recovery from Liquid Crystal Displays: Bench Scale Validation Driven by Sustainability Assessment
Indium is considered a valuable and irreplaceable material for a variety of applications that improve the quality of human life. Due to its limited availability and the growing demand, it is mandatory to find sustainable solutions for indium recovery from end-of-life devices. The green indium patent...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-10, Vol.16 (20), p.8917 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indium is considered a valuable and irreplaceable material for a variety of applications that improve the quality of human life. Due to its limited availability and the growing demand, it is mandatory to find sustainable solutions for indium recovery from end-of-life devices. The green indium patented technology SCRIPT (ITA202018000008207) focuses on recovering indium from ground LCD panels, developed through laboratory scale investigation. The process ensures high recovery efficiencies of indium (>90%), features a simple design, and fully exploits the solid residue with the production of a concrete for building applications. This manuscript presents a study focused on the validation and optimization of the patented SCRIPT technology at the bench scale, driven by sustainability assessment. Bench scale experiments successfully validated the technology, improving its technology readiness level. Furthermore, an environmental sustainability assessment highlighted the importance of treating the finest fraction, which has the highest indium concentration. Optimization tests at the bench scale demonstrated that water could be recirculated for more than five cycles. The economic sustainability tests highlighted that when the indium concentration in the material fed into the recycling plant is above 1000 mg/kg, the technology is cost effective and worth investment. Our study is fundamental for boosting indium recycling in the world. Moreover, our methodological approach represents a guideline for achieving sustainability goals within circular economy approaches for strategic metals in complex matrices. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16208917 |