Tracking Differentiator-Based Identification Method for Temperature Predictive Control of Uncooled Heating Processes

The temperature control of uncooled heating processes presents challenges due to a substantial lag and the absence of active cooling mechanisms, which can lead to overshoot and oscillations. To address these issues, we propose an anti-disturbance identification method based on a tracking differentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-10, Vol.12 (10), p.2137
Hauptverfasser: Hua, Shan, Chen, Gang, Dong, Yanni, Fan, Changhao, Nie, Zhuoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The temperature control of uncooled heating processes presents challenges due to a substantial lag and the absence of active cooling mechanisms, which can lead to overshoot and oscillations. To address these issues, we propose an anti-disturbance identification method based on a tracking differentiator (TD) and an input-constrained temperature predictive control (ICTPC) strategy. Our approach specifically considers the impact of unknown disturbances on model identification within a second-order heating process. By employing a TD to differentiate the input and output signals, we effectively minimize the identification error caused by low-frequency disturbances, yielding a robust anti-disturbance identification technique. Following this, we establish input constraints to limit the amplitude and variation of the control input, ensuring a more controlled and predictable system response. Using the identified model, an ICTPC algorithm is designed to achieve stable temperature control in uncooled heating processes. Experimental results from a typical uncooled heating system demonstrate that our method not only significantly reduces overshoot but also effectively mitigates temperature fluctuations, leading to enhanced control performance and system stability. This study provides a practical solution for temperature control in systems without cooling capabilities, offering substantial improvements in the efficiency and quality of industrial production processes.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12102137