Tracking Differentiator-Based Identification Method for Temperature Predictive Control of Uncooled Heating Processes
The temperature control of uncooled heating processes presents challenges due to a substantial lag and the absence of active cooling mechanisms, which can lead to overshoot and oscillations. To address these issues, we propose an anti-disturbance identification method based on a tracking differentia...
Gespeichert in:
Veröffentlicht in: | Processes 2024-10, Vol.12 (10), p.2137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The temperature control of uncooled heating processes presents challenges due to a substantial lag and the absence of active cooling mechanisms, which can lead to overshoot and oscillations. To address these issues, we propose an anti-disturbance identification method based on a tracking differentiator (TD) and an input-constrained temperature predictive control (ICTPC) strategy. Our approach specifically considers the impact of unknown disturbances on model identification within a second-order heating process. By employing a TD to differentiate the input and output signals, we effectively minimize the identification error caused by low-frequency disturbances, yielding a robust anti-disturbance identification technique. Following this, we establish input constraints to limit the amplitude and variation of the control input, ensuring a more controlled and predictable system response. Using the identified model, an ICTPC algorithm is designed to achieve stable temperature control in uncooled heating processes. Experimental results from a typical uncooled heating system demonstrate that our method not only significantly reduces overshoot but also effectively mitigates temperature fluctuations, leading to enhanced control performance and system stability. This study provides a practical solution for temperature control in systems without cooling capabilities, offering substantial improvements in the efficiency and quality of industrial production processes. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12102137 |