Fe2NiSe4 Nanowires Array for Highly Efficient Electrochemical H2S Splitting and Simultaneous Energy-Saving H2 Production
The electrochemical removal of abundant and toxic H2S from highly sour reservoirs has emerged as a promising method for hydrogen production and desulfurization. Nevertheless, the ineffectiveness and instability of current electrocatalysts have impeded further utilization of H2S. In this communicatio...
Gespeichert in:
Veröffentlicht in: | Processes 2024-10, Vol.12 (10), p.2111 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrochemical removal of abundant and toxic H2S from highly sour reservoirs has emerged as a promising method for hydrogen production and desulfurization. Nevertheless, the ineffectiveness and instability of current electrocatalysts have impeded further utilization of H2S. In this communication, we introduce a robust array of Fe2NiSe4 nanowires synthesized in situ on a FeNi3 foam (Fe2NiSe4/FeNi3) via hydrothermal treatment. This array acts as an active electrocatalyst for ambient H2S splitting. It offers numerous exposed active sites and a rapid electron transport channel, significantly enhancing charge transport rates. As an electrode material, Fe2NiSe4/FeNi3 displays remarkable electrocatalytic efficiency for both sulfide oxidation and hydrogen evolution reactions. This bifunctional electrode achieves efficient electrochemical H2S splitting at a low potential of 440 mV to reach a current density of 100 mA∙cm−2, with a faradaic efficiency for hydrogen production of approximately 98%. These findings highlight its significant potential for desulfurization and energy-efficient hydrogen generation. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12102111 |