A New (3+1)-Dimensional Extension of the Kadomtsev–Petviashvili–Boussinesq-like Equation: Multiple-Soliton Solutions and Other Particular Solutions

In this study, we focus on investigating a novel extended (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like (KPB-like) equation. Initially, we utilized the Lie symmetry method to determine the symmetry generator by considering the Lie invariance condition. Subsequently, by similar reduction,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-10, Vol.16 (10), p.1345
Hauptverfasser: Li, Xiaojian, Li, Lianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we focus on investigating a novel extended (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like (KPB-like) equation. Initially, we utilized the Lie symmetry method to determine the symmetry generator by considering the Lie invariance condition. Subsequently, by similar reduction, the equation becomes ordinary differential equations (ODEs). Exact analytical solutions were derived through the power series method, with a comprehensive proof of solution convergence. Employing the (G′/G2)-expansion method enabled the identification of trigonometric, exponential, and rational solutions of the equation. Furthermore, we established the auto-Bäcklund transformation of the equation. Multiple-soliton solutions were identified by utilizing Hirota’s bilinear method. The fundamental properties of these solutions were elucidated through graphical representations. Our results are of certain value to the interpretation of nonlinear problems.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16101345