‘Rhythmite’, Ca29(SiO4)8Cl26, an Anthropogenic Phase from the Chelyabinsk Coal Basin (Ural, Russia) with a Complex Modular Structure Related to α-Ca3SiO4Cl2 (‘Albovite’): Crystal Structure, Raman Spectra, and Thermal Expansion

‘Rhythmite’, Ca29(SiO4)8Cl26, an anthropogenic calcium chloride silicate from the Chelyabinsk coal basin (South Ural, Russia), was investigated using chemical microprobe analysis, in situ single-crystal X-ray diffraction analysis (27–727 °C), and Raman spectroscopy. ‘Rhythmite’ is orthorhombic, Pnma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2024-10, Vol.14 (10), p.1048
Hauptverfasser: Avdontceva, Margarita S., Zolotarev, Andrey A., Brazhnikova, Anastasia S., Bocharov, Vladimir N., Vlasenko, Natalia S., Rassomakhin, Mikhail A., Krivovichev, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‘Rhythmite’, Ca29(SiO4)8Cl26, an anthropogenic calcium chloride silicate from the Chelyabinsk coal basin (South Ural, Russia), was investigated using chemical microprobe analysis, in situ single-crystal X-ray diffraction analysis (27–727 °C), and Raman spectroscopy. ‘Rhythmite’ is orthorhombic, Pnma: a = 17.0749(6), b = 15.1029(5), c = 13.2907(4) Å, and V = 3427.42(18) Å3 (R1 = 0.045). The crystal structure of ‘rhythmite’ consists of a porous framework formed by Ca-O bonds and SiO4 tetrahedra with additional Ca2+ cations and Cl− anions in the structure interstices. The framework is built up from multinuclear [Ca15(SiO4)4]14+ fundamental building blocks (FBBs) cut from the crystal structure of α-Ca3SiO4Cl2 (‘albovite’). The FBBs are linked by sharing common Ca atoms to form a network with an overall pcu topology. The empirical chemical formula was calculated as Ca29.02(Si7.89Al0.05P0.05)Ʃ7.99O32Cl26 (on the basis of Cl + O = 58). ‘Rhythmite’ is stable up to 627 °C and expands slightly anisotropically (αmax/αmin = 1.40) in the ab and bc planes and almost isotropically in the ac plane (α33/α11 = 1.02) with the following thermal expansion coefficients (×106 °C−1): α11 = 14.6(1), α22 = 20.5(4), α33 = 15.0(3), and αV = 50.1(6) (room temperature). During expansion, the silicate tetrahedra remain relatively rigid with average bond length changes of less than 0.5%. A structural complexity analysis indicates that ‘rhythmite’ is complex, with IG,total = 920.313 (bits/u.c.), which significantly exceeds the average value of structural complexity for silicates and is caused by the modular framework construction and the presence of a large number of independent positions in the crystal structure.
ISSN:2075-163X
2075-163X
DOI:10.3390/min14101048