Counting Locally Optimal Tours in the TSP

We show that the problem of counting the number of 2-optimal tours in instances of the Travelling Salesperson Problem (TSP) on complete graphs is #P-complete. In addition, we show that the expected number of 2-optimal tours in random instances of the TSP on complete graphs is \(O(1.2098^n \sqrt{n!})...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Manthey, Bodo, Jesse van Rhijn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the problem of counting the number of 2-optimal tours in instances of the Travelling Salesperson Problem (TSP) on complete graphs is #P-complete. In addition, we show that the expected number of 2-optimal tours in random instances of the TSP on complete graphs is \(O(1.2098^n \sqrt{n!})\). Based on numerical experiments, we conjecture that the true bound is at most \(O(\sqrt{n!})\), which is approximately the square root of the total number of tours.
ISSN:2331-8422