Mixed Reality Environment and High-Dimensional Continuification Control for Swarm Robotics

Many new methodologies for the control of large-scale multiagent systems are based on macroscopic representations of the system dynamics, in the form of continuum approximations of large ensembles. These techniques, developed in the limit case of an infinite number of agents, are usually validated o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2024-11, Vol.32 (6), p.2484-2491
Hauptverfasser: Carlo Maffettone, Gian, Liguori, Lorenzo, Palermo, Eduardo, Di Bernardo, Mario, Porfiri, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many new methodologies for the control of large-scale multiagent systems are based on macroscopic representations of the system dynamics, in the form of continuum approximations of large ensembles. These techniques, developed in the limit case of an infinite number of agents, are usually validated only through numerical simulations. Here, we introduce a mixed reality setup for testing swarm robotics techniques, focusing on the macroscopic collective motion of robotic swarms. This hybrid apparatus combines real differential drive robots and virtual agents to create a heterogeneous swarm of tunable size. We also extend continuification-based control methods for swarms to higher dimensions and experimentally assess their validity in the new platform. Our study demonstrates the effectiveness of the platform for conducting large-scale swarm robotics experiments, and it contributes new theoretical insights into control algorithms exploiting continuification approaches.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2024.3430128