On combinatorial properties of Gruenberg–Kegel graphs of finite groups
If G is a finite group, then the spectrum ω ( G ) is the set of all element orders of G . The prime spectrum π ( G ) is the set of all primes belonging to ω ( G ) . A simple graph Γ ( G ) whose vertex set is π ( G ) and in which two distinct vertices r and s are adjacent if and only if r s ∈ ω ( G )...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2024-12, Vol.205 (4), p.711-723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If
G
is a finite group, then the spectrum
ω
(
G
)
is the set of all element orders of
G
. The prime spectrum
π
(
G
)
is the set of all primes belonging to
ω
(
G
)
. A simple graph
Γ
(
G
)
whose vertex set is
π
(
G
)
and in which two distinct vertices
r
and
s
are adjacent if and only if
r
s
∈
ω
(
G
)
is called the Gruenberg–Kegel graph or the prime graph of
G
. In this paper, we prove that if
G
is a group of even order, then the set of vertices which are non-adjacent to 2 in
Γ
(
G
)
forms a union of cliques. Moreover, we decide when a strongly regular graph is isomorphic to the Gruenberg–Kegel graph of a finite group. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-024-02005-6 |