Nonlinear Anderson Localized States at Arbitrary Disorder

Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-11, Vol.405 (11), Article 272
Hauptverfasser: Liu, Wencai, Wang, W.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an Anderson model H = - Δ + V in arbitrary dimensions, and assuming the model satisfies localization, we construct quasi-periodic in time (and localized in space) solutions for the nonlinear random Schrödinger equation i ∂ u ∂ t = - Δ u + V u + δ | u | 2 p u for small δ . Our approach combines probabilistic estimates from the Anderson model with the Craig–Wayne–Bourgain method for studying quasi-periodic solutions of nonlinear PDEs.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-024-05150-z