The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis
The performance of the cathodic hydrogen evolution reaction (HER) in alkaline water electrolysis, an attractive hydrogen production technology, is highly dependent on efficient catalysts. Ruthenium (Ru), which is more affordable than platinum (Pt) and has a metal–hydrogen bond strength comparable to...
Gespeichert in:
Veröffentlicht in: | Catalysts 2024-10, Vol.14 (10), p.671 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of the cathodic hydrogen evolution reaction (HER) in alkaline water electrolysis, an attractive hydrogen production technology, is highly dependent on efficient catalysts. Ruthenium (Ru), which is more affordable than platinum (Pt) and has a metal–hydrogen bond strength comparable to that of Pt, shows exceptional catalytic activity for the alkaline HER. Consequently, in recent years, research in the field of hydrogen production through alkaline water electrolysis has increasingly focused on Ru as a key element. This review first discusses the fundamentals of the alkaline HER, including principles, factors affecting its performance, and regulation strategies for its performance improvement. The research progress of ruthenium-based catalysts for the alkaline HER is then summarized with selected examples. The electronic structures of various ruthenium nanoparticles, ruthenium-M (M = noble metals and transition metals) heterogeneous catalysts, and ruthenium-based compounds are regulated by modulating the components and ligands of Ru atoms, aiming to achieve low water dissociation energies and optimal binding energies for hydrogen (H) and hydroxyl (−OH) groups, thereby enhancing the alkaline HER catalytic performance. Finally, the problems, challenges, and future development directions of the alkaline HER are proposed. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal14100671 |