Nonlinear manifold learning determines microgel size from Raman spectroscopy
Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Rama...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2024-10, Vol.70 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | AIChE journal |
container_volume | 70 |
creator | Koronaki, Eleni D. Kaven, Luise F. Faust, Johannes M. M. Kevrekidis, Ioannis G. Mitsos, Alexander |
description | Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra. |
doi_str_mv | 10.1002/aic.18494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120352276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120352276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2224-b52826a34782f08a1f1a7c94e895566e7acca18587b8b09285c1803b3cb6a6103</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmVw4B9E4sShm502bXqcKhiTJpAQnKM0S6dMbVOSTWj8egLlysl69mf76RFyizBHALZQVs9R5FV-RhLkeZnyCvg5SQAA09jAS3IVwj4qVgqWkM2zGzo7GOVprwbbum5Lu6gGO-zo1hyM7-M00N5q73amo8F-Gdp619NXFTdoGI0-eBe0G0_X5KJVXTA3f3VG3h8f3uqndPOyWtfLTaoZY3nacCZYobI8OmhBKGxRlbrKjag4LwpTKq0VCi7KRjRQMcE1CsiaTDeFKhCyGbmb7o7efRxNOMi9O_ohvpQZMsg4Y2URqfuJis5D8KaVo7e98ieJIH_CkjEs-RtWZBcT-2k7c_oflMt1PW18A2oQapQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120352276</pqid></control><display><type>article</type><title>Nonlinear manifold learning determines microgel size from Raman spectroscopy</title><source>Access via Wiley Online Library</source><creator>Koronaki, Eleni D. ; Kaven, Luise F. ; Faust, Johannes M. M. ; Kevrekidis, Ioannis G. ; Mitsos, Alexander</creator><creatorcontrib>Koronaki, Eleni D. ; Kaven, Luise F. ; Faust, Johannes M. M. ; Kevrekidis, Ioannis G. ; Mitsos, Alexander</creatorcontrib><description>Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18494</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Diffusion ; diffusion maps ; Light scattering ; Machine learning ; Manifolds (mathematics) ; Microgels ; Neural networks ; nonlinear manifold ; Particle size ; Photon correlation spectroscopy ; polymerization ; Polymers ; Raman spectra ; Raman spectroscopy ; Signal quality ; Spectroscopy ; Technology assessment</subject><ispartof>AIChE journal, 2024-10, Vol.70 (10), p.n/a</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2224-b52826a34782f08a1f1a7c94e895566e7acca18587b8b09285c1803b3cb6a6103</cites><orcidid>0000-0003-0335-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18494$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18494$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Koronaki, Eleni D.</creatorcontrib><creatorcontrib>Kaven, Luise F.</creatorcontrib><creatorcontrib>Faust, Johannes M. M.</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G.</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><title>Nonlinear manifold learning determines microgel size from Raman spectroscopy</title><title>AIChE journal</title><description>Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra.</description><subject>Diffusion</subject><subject>diffusion maps</subject><subject>Light scattering</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Microgels</subject><subject>Neural networks</subject><subject>nonlinear manifold</subject><subject>Particle size</subject><subject>Photon correlation spectroscopy</subject><subject>polymerization</subject><subject>Polymers</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Signal quality</subject><subject>Spectroscopy</subject><subject>Technology assessment</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kEFPwzAMhSMEEmVw4B9E4sShm502bXqcKhiTJpAQnKM0S6dMbVOSTWj8egLlysl69mf76RFyizBHALZQVs9R5FV-RhLkeZnyCvg5SQAA09jAS3IVwj4qVgqWkM2zGzo7GOVprwbbum5Lu6gGO-zo1hyM7-M00N5q73amo8F-Gdp619NXFTdoGI0-eBe0G0_X5KJVXTA3f3VG3h8f3uqndPOyWtfLTaoZY3nacCZYobI8OmhBKGxRlbrKjag4LwpTKq0VCi7KRjRQMcE1CsiaTDeFKhCyGbmb7o7efRxNOMi9O_ohvpQZMsg4Y2URqfuJis5D8KaVo7e98ieJIH_CkjEs-RtWZBcT-2k7c_oflMt1PW18A2oQapQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Koronaki, Eleni D.</creator><creator>Kaven, Luise F.</creator><creator>Faust, Johannes M. M.</creator><creator>Kevrekidis, Ioannis G.</creator><creator>Mitsos, Alexander</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></search><sort><creationdate>202410</creationdate><title>Nonlinear manifold learning determines microgel size from Raman spectroscopy</title><author>Koronaki, Eleni D. ; Kaven, Luise F. ; Faust, Johannes M. M. ; Kevrekidis, Ioannis G. ; Mitsos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2224-b52826a34782f08a1f1a7c94e895566e7acca18587b8b09285c1803b3cb6a6103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion</topic><topic>diffusion maps</topic><topic>Light scattering</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Microgels</topic><topic>Neural networks</topic><topic>nonlinear manifold</topic><topic>Particle size</topic><topic>Photon correlation spectroscopy</topic><topic>polymerization</topic><topic>Polymers</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Signal quality</topic><topic>Spectroscopy</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koronaki, Eleni D.</creatorcontrib><creatorcontrib>Kaven, Luise F.</creatorcontrib><creatorcontrib>Faust, Johannes M. M.</creatorcontrib><creatorcontrib>Kevrekidis, Ioannis G.</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koronaki, Eleni D.</au><au>Kaven, Luise F.</au><au>Faust, Johannes M. M.</au><au>Kevrekidis, Ioannis G.</au><au>Mitsos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear manifold learning determines microgel size from Raman spectroscopy</atitle><jtitle>AIChE journal</jtitle><date>2024-10</date><risdate>2024</risdate><volume>70</volume><issue>10</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.18494</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2024-10, Vol.70 (10), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_3120352276 |
source | Access via Wiley Online Library |
subjects | Diffusion diffusion maps Light scattering Machine learning Manifolds (mathematics) Microgels Neural networks nonlinear manifold Particle size Photon correlation spectroscopy polymerization Polymers Raman spectra Raman spectroscopy Signal quality Spectroscopy Technology assessment |
title | Nonlinear manifold learning determines microgel size from Raman spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20manifold%20learning%20determines%20microgel%20size%20from%20Raman%20spectroscopy&rft.jtitle=AIChE%20journal&rft.au=Koronaki,%20Eleni%20D.&rft.date=2024-10&rft.volume=70&rft.issue=10&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18494&rft_dat=%3Cproquest_cross%3E3120352276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120352276&rft_id=info:pmid/&rfr_iscdi=true |