Nonlinear manifold learning determines microgel size from Raman spectroscopy

Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Rama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2024-10, Vol.70 (10), p.n/a
Hauptverfasser: Koronaki, Eleni D., Kaven, Luise F., Faust, Johannes M. M., Kevrekidis, Ioannis G., Mitsos, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymer particle size constitutes a crucial characteristic of product quality in polymerization. Raman spectroscopy is an established and reliable process analytical technology for in‐line concentration monitoring. Recent approaches and some theoretical considerations show a correlation between Raman signals and particle sizes but do not determine polymer size from Raman spectroscopic measurements accurately and reliably. With this in mind, we propose three alternative machine learning workflows to perform this task, all involving diffusion maps, a nonlinear manifold learning technique for dimensionality reduction: (i) directly from diffusion maps, (ii) alternating diffusion maps, and (iii) conformal autoencoder neural networks. We apply the workflows to a data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel (cross‐linked polymer) samples in a diameter range of 208–483 nm. The conformal autoencoders substantially outperform state‐of‐the‐art methods and results for the first time in a promising prediction of polymer size from Raman spectra.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.18494