POD-Attention: Unlocking Full Prefill-Decode Overlap for Faster LLM Inference

Each request in LLM inference goes through two phases: compute-bound prefill and memory-bandwidth-bound decode. To improve GPU utilization, recent systems use hybrid batching that combines the prefill and decode phases of different requests into the same batch. Hybrid batching works well for linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Kamath, Aditya K, Prabhu, Ramya, Mohan, Jayashree, Simon, Peter, Ramachandran Ramjee, Panwar, Ashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Each request in LLM inference goes through two phases: compute-bound prefill and memory-bandwidth-bound decode. To improve GPU utilization, recent systems use hybrid batching that combines the prefill and decode phases of different requests into the same batch. Hybrid batching works well for linear operations as it amortizes the cost of loading model weights from HBM. However, attention computation in hybrid batches remains inefficient because existing attention kernels are optimized for either prefill or decode. In this paper, we present POD-Attention -- the first GPU kernel that efficiently computes attention for hybrid batches. POD-Attention aims to maximize the utilization of both compute and memory bandwidth by carefully allocating the GPU's resources such that prefill and decode operations happen concurrently on the same multiprocessor. We integrate POD-Attention in a state-of-the-art LLM inference scheduler Sarathi-Serve. POD-Attention speeds up attention computation by up to 75% (mean 28%) and increases LLM serving throughput by up to 22% in offline inference. In online inference, POD-Attention enables lower time-to-first-token (TTFT), time-between-tokens (TBT), and request execution latency versus Sarathi-Serve.
ISSN:2331-8422