Transforming Sustainable Aquaculture: Synergizing Fuzzy Systems and Deep Learning Innovations

Pisciculture encounters an array of intricate challenges that span disease management, preservation of water quality, prevention of genetic hybridization, ensuring the integrity of net systems, sourcing sustainable aquatic feed, and comprehending fish growth and reproductive dynamics. Addressing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2024-11, Vol.26 (8), p.2536-2552
Hauptverfasser: Haobijam, Basanta, Huang, Yo-Ping, Chang, Yue-Shan, Chang, Tsun-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pisciculture encounters an array of intricate challenges that span disease management, preservation of water quality, prevention of genetic hybridization, ensuring the integrity of net systems, sourcing sustainable aquatic feed, and comprehending fish growth and reproductive dynamics. Addressing these multifaceted challenges necessitates a comprehensive research approach. This study employs an innovative synergy of fuzzy logic and deep learning techniques, resulting in a robust strategy to tackle these obstacles effectively. Fuzzy logic excels in assessing stressed fish conditions by handling inherent uncertainties. Simultaneously, YOLOv7 with fuzzy color enhancement (YOLOv7FCE) is used to detect damaged fish nets, thereby mitigating losses and upholding the integrity of the net infrastructure. This approach also leverages YOLOv7FCE for identifying Cobia fish within shoals, streamlining the identification process. Subsequently, DeepLabv3 is implemented to meticulously segment the recognized Cobia fish, facilitating precise measurements of their physical attributes. This comprehensive methodology yields profound insights into growth patterns and feeding tendencies within the confined aquatic environment. By embracing this approach, the research presents a versatile and adaptive framework that not only enhances our comprehension of piscine dynamics but also holds the potential to revolutionize the aquaculture industry.
ISSN:1562-2479
2199-3211
DOI:10.1007/s40815-024-01744-w