Optimal geodesics for boundary points of the Gardiner–Masur compactification

The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-12, Vol.218 (6), Article 110
Hauptverfasser: Lou, Xiaoke, Su, Weixu, Tan, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Geometriae dedicata
container_volume 218
creator Lou, Xiaoke
Su, Weixu
Tan, Dong
description The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compactification that fill up the surface. We show that there is a unique Teichmüller geodesic that is optimal for the horofunctions corresponding to ξ and η . In particular, when ξ and η are Busemann points that fill up the surface, the Teichmüller geodesic converges to ξ in the forward direction and to η in the backward direction. As an application, we show that if G n is a sequence of Teichmüller geodesics passing through X n and Y n such that X n → ξ and Y n → η in the Gardiner–Masur compactification, then G n converges to a unique Teichmüller geodesic.
doi_str_mv 10.1007/s10711-024-00952-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3119653381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119653381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-77e49e0e64c221a2e1a2cdad5ede8d8c093cb4239f91321a788788c8ed6a235b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4CngOZqPzWb3KMUvqPai55AmszWl3azJLqU338E39EmMruBNmGEuv_8M80PonNFLRqm6SowqxgjlBaG0lpzsDtCEScVJzcrqEE0oLUoilZTH6CSlNc2UUnyCnhZd77dmg1cQHCRvE25CxMswtM7EPe6Cb_uEQ4P7V8B3JjrfQvx8_3g0aYjYhm1nbO8bb03vQ3uKjhqzSXD2O6fo5fbmeXZP5ou7h9n1nFhOaU-UgqIGCmVhOWeGQ27rjJPgoHKVpbWwy4KLuqmZyICqqly2AlcaLuRSTNHFuLeL4W2A1Ot1GGKbT2rBWF1KISqWKT5SNoaUIjS6i_nZuNeM6m9vevSmszf9403vckiMoZThdgXxb_U_qS8f7HKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119653381</pqid></control><display><type>article</type><title>Optimal geodesics for boundary points of the Gardiner–Masur compactification</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lou, Xiaoke ; Su, Weixu ; Tan, Dong</creator><creatorcontrib>Lou, Xiaoke ; Su, Weixu ; Tan, Dong</creatorcontrib><description>The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compactification that fill up the surface. We show that there is a unique Teichmüller geodesic that is optimal for the horofunctions corresponding to ξ and η . In particular, when ξ and η are Busemann points that fill up the surface, the Teichmüller geodesic converges to ξ in the forward direction and to η in the backward direction. As an application, we show that if G n is a sequence of Teichmüller geodesics passing through X n and Y n such that X n → ξ and Y n → η in the Gardiner–Masur compactification, then G n converges to a unique Teichmüller geodesic.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-024-00952-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2024-12, Vol.218 (6), Article 110</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-77e49e0e64c221a2e1a2cdad5ede8d8c093cb4239f91321a788788c8ed6a235b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-024-00952-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-024-00952-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Lou, Xiaoke</creatorcontrib><creatorcontrib>Su, Weixu</creatorcontrib><creatorcontrib>Tan, Dong</creatorcontrib><title>Optimal geodesics for boundary points of the Gardiner–Masur compactification</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compactification that fill up the surface. We show that there is a unique Teichmüller geodesic that is optimal for the horofunctions corresponding to ξ and η . In particular, when ξ and η are Busemann points that fill up the surface, the Teichmüller geodesic converges to ξ in the forward direction and to η in the backward direction. As an application, we show that if G n is a sequence of Teichmüller geodesics passing through X n and Y n such that X n → ξ and Y n → η in the Gardiner–Masur compactification, then G n converges to a unique Teichmüller geodesic.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4CngOZqPzWb3KMUvqPai55AmszWl3azJLqU338E39EmMruBNmGEuv_8M80PonNFLRqm6SowqxgjlBaG0lpzsDtCEScVJzcrqEE0oLUoilZTH6CSlNc2UUnyCnhZd77dmg1cQHCRvE25CxMswtM7EPe6Cb_uEQ4P7V8B3JjrfQvx8_3g0aYjYhm1nbO8bb03vQ3uKjhqzSXD2O6fo5fbmeXZP5ou7h9n1nFhOaU-UgqIGCmVhOWeGQ27rjJPgoHKVpbWwy4KLuqmZyICqqly2AlcaLuRSTNHFuLeL4W2A1Ot1GGKbT2rBWF1KISqWKT5SNoaUIjS6i_nZuNeM6m9vevSmszf9403vckiMoZThdgXxb_U_qS8f7HKE</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lou, Xiaoke</creator><creator>Su, Weixu</creator><creator>Tan, Dong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Optimal geodesics for boundary points of the Gardiner–Masur compactification</title><author>Lou, Xiaoke ; Su, Weixu ; Tan, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-77e49e0e64c221a2e1a2cdad5ede8d8c093cb4239f91321a788788c8ed6a235b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Xiaoke</creatorcontrib><creatorcontrib>Su, Weixu</creatorcontrib><creatorcontrib>Tan, Dong</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Xiaoke</au><au>Su, Weixu</au><au>Tan, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal geodesics for boundary points of the Gardiner–Masur compactification</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>218</volume><issue>6</issue><artnum>110</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compactification that fill up the surface. We show that there is a unique Teichmüller geodesic that is optimal for the horofunctions corresponding to ξ and η . In particular, when ξ and η are Busemann points that fill up the surface, the Teichmüller geodesic converges to ξ in the forward direction and to η in the backward direction. As an application, we show that if G n is a sequence of Teichmüller geodesics passing through X n and Y n such that X n → ξ and Y n → η in the Gardiner–Masur compactification, then G n converges to a unique Teichmüller geodesic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-024-00952-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2024-12, Vol.218 (6), Article 110
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_3119653381
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Geodesy
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Optimal geodesics for boundary points of the Gardiner–Masur compactification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20geodesics%20for%20boundary%20points%20of%20the%20Gardiner%E2%80%93Masur%20compactification&rft.jtitle=Geometriae%20dedicata&rft.au=Lou,%20Xiaoke&rft.date=2024-12-01&rft.volume=218&rft.issue=6&rft.artnum=110&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-024-00952-w&rft_dat=%3Cproquest_cross%3E3119653381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3119653381&rft_id=info:pmid/&rfr_iscdi=true