Optimal geodesics for boundary points of the Gardiner–Masur compactification

The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-12, Vol.218 (6), Article 110
Hauptverfasser: Lou, Xiaoke, Su, Weixu, Tan, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gardiner–Masur compactification of Teichmüller space is naturally homeomorphic to the horofunction compactification of the Teichmüller metric, in the sense that the identity map on Teichmüller space extends to a homeomorphism. Let ξ and η be a pair of boundary points in the Gardiner–Masur compactification that fill up the surface. We show that there is a unique Teichmüller geodesic that is optimal for the horofunctions corresponding to ξ and η . In particular, when ξ and η are Busemann points that fill up the surface, the Teichmüller geodesic converges to ξ in the forward direction and to η in the backward direction. As an application, we show that if G n is a sequence of Teichmüller geodesics passing through X n and Y n such that X n → ξ and Y n → η in the Gardiner–Masur compactification, then G n converges to a unique Teichmüller geodesic.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-024-00952-w