Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling

The accuracy of global navigation satellite system (GNSS) receivers is significantly compromised by interference from jamming devices. Consequently, the detection of these jammers are crucial to mitigating such interference signals. However, robust classification of interference using machine learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Heublein, Lucas, Feigl, Tobias, Rügamer, Alexander, Ott, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accuracy of global navigation satellite system (GNSS) receivers is significantly compromised by interference from jamming devices. Consequently, the detection of these jammers are crucial to mitigating such interference signals. However, robust classification of interference using machine learning (ML) models is challenging due to the lack of labeled data in real-world environments. In this paper, we propose an ML approach that achieves high generalization in classifying interference through orchestrated monitoring stations deployed along highways. We present a semi-supervised approach coupled with an uncertainty-based voting mechanism by combining Monte Carlo and Deep Ensembles that effectively minimizes the requirement for labeled training samples to less than 5% of the dataset while improving adaptability across varying environments. Our method demonstrates strong performance when adapted from indoor environments to real-world scenarios.
ISSN:2331-8422