A Quantum Optimization Algorithm for Optimal Electric Vehicle Charging Station Placement for Intercity Trips
Electric vehicles (EVs) play a significant role in enhancing the sustainability of transportation systems. However, their widespread adoption is hindered by inadequate public charging infrastructure, particularly to support long-distance travel. Identifying optimal charging station locations in larg...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electric vehicles (EVs) play a significant role in enhancing the sustainability of transportation systems. However, their widespread adoption is hindered by inadequate public charging infrastructure, particularly to support long-distance travel. Identifying optimal charging station locations in large transportation networks presents a well-known NP-hard combinatorial optimization problem, as the search space grows exponentially with the number of potential charging station locations. This paper introduces a quantum search-based optimization algorithm designed to enhance the efficiency of solving this NP-hard problem for transportation networks. By leveraging quantum parallelism, amplitude amplification, and quantum phase estimation as a subroutine, the optimal solution is identified with a quadratic improvement in complexity compared to classical exact methods, such as branch and bound. The detailed design and complexity of a resource-efficient quantum circuit are discussed. |
---|---|
ISSN: | 2331-8422 |