Equivalence of definitions of fractional caloric functions

We prove equivalence between nonnegative distributional solutions of the fractional heat equation and caloric functions, i.e., functions satisfying the mean value property with respect to the space-time isotropic \(\alpha\)-stable process. We also provide sufficient conditions for the boundary and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
1. Verfasser: Rutkowski, Artur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove equivalence between nonnegative distributional solutions of the fractional heat equation and caloric functions, i.e., functions satisfying the mean value property with respect to the space-time isotropic \(\alpha\)-stable process. We also provide sufficient conditions for the boundary and exterior data under which the solutions are classical and we give off-diagonal estimates for the derivatives of the Dirichlet heat kernel and the lateral Poisson kernel, which might be of their own interest.
ISSN:2331-8422