Robust energy storage density and negative capacitance in antiferroelectric heterostructures grown by atomic layer epitaxy

Energy storage devices with high energy storage density ( U ESD ), fast operating speed, and high output power are indispensable for modern energy needs. This study presents a wafer-scale epitaxial antiferroelectric ZrO 2 /TiN heterostructure with a state-of-the-art high U ESD of ∼118.6 J cm −3 . Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (41), p.28211-28223
Hauptverfasser: Jiang, Yu-Sen, Chao, Yi-Hsuan, Shiojiri, Makoto, Yin, Yu-Tung, Chen, Miin-Jang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy storage devices with high energy storage density ( U ESD ), fast operating speed, and high output power are indispensable for modern energy needs. This study presents a wafer-scale epitaxial antiferroelectric ZrO 2 /TiN heterostructure with a state-of-the-art high U ESD of ∼118.6 J cm −3 . This significant U ESD originates from the predominant [110] antiferroelectric polar axis of ZrO 2 oriented out-of-plane, which is confirmed by macroscopic and microscopic analyses of the epitaxial relationships. The construction of a coincidence site lattice indicates the low lattice mismatch between ZrO 2 (110) and TiN(111). The stacking of ZrO 2 sublayers demonstrates the importance of precise epitaxy in controlling crystal orientation, minimizing leakage current, and improving antiferroelectric characteristics. Furthermore, the epitaxial growth of ZrO 2 enables a clear observation of inductive-like negative capacitance response, providing insights into antiferroelectric dynamics. The high U ESD highlights the significance of atomic layer epitaxy for high-quality antiferroelectric heterostructures, particularly in epitaxial growth methods and energy storage applications. A state-of-the-art high energy storage density was achieved in an epitaxial ZrO 2 /TiN capacitor with the characterization of inductive-like negative capacitance via atomic layer epitaxy at low growth temperature, large area, and high working pressure.
ISSN:2050-7488
2050-7496
DOI:10.1039/d4ta04610b