Fabrication of amorphous subnanometric palladium nanostructures on metallic transition metal dichalcogenides for efficient hydrogen evolution reaction
Fabricating solution-processable composite materials of transition metal dichalcogenides (TMDs) with ultrasmall noble metal structures employing an easy preparation method poses a significant challenge. In this study, we utilized a green, one-step synthetic method by directly employing electrochemic...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry frontiers 2024-10, Vol.11 (21), p.7296-736 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fabricating solution-processable composite materials of transition metal dichalcogenides (TMDs) with ultrasmall noble metal structures employing an easy preparation method poses a significant challenge. In this study, we utilized a green, one-step synthetic method by directly employing electrochemical lithium intercalation-based exfoliated metallic TMD nanosheets (MoS
2
, WS
2
, and TiS
2
) to reduce palladium ions (Pd
2+
) to metallic Pd
0
, leading to the deposition on their surfaces. The resulting Pd nanoparticles (Pd NPs) in composites (Pd-MoS
2
, Pd-WS
2
, and Pd-TiS
2
) were found to be amorphous, with a size ranging from 0.81 to 1.37 nm. The impact of Pd NP size on hydrogen evolution reaction (HER) activity was elucidated. Among the fabricated composites, Pd-MoS
2
exhibits the best HER performance, attributed to its smallest Pd NP size (0.81 nm). It shows an overpotential of 70 mV at a current density of 10 mA cm
−2
, along with a Tafel slope of 43 mV dec
−1
. These HER performance metrics surpass those of most Pd-decorated 2D catalysts.
Metallic transition metal dichalcogenide nanosheets decorated with amorphous subnanometric Pd nanoparticles exhibit comparable HER performance to that of commercial Pt-C. |
---|---|
ISSN: | 2052-1553 2052-1545 2052-1553 |
DOI: | 10.1039/d4qi00622d |