Enhancing Routing in SD-EONs through Reinforcement Learning: A Comparative Analysis

This paper presents an optimization framework for routing in software-defined elastic optical networks using reinforcement learning algorithms. We specifically implement and compare the epsilon-greedy bandit, upper confidence bound (UCB) bandit, and Q-learning algorithms to traditional methods such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: McCann, Ryan, Rezaee, Arash, Vokkarane, Vinod M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an optimization framework for routing in software-defined elastic optical networks using reinforcement learning algorithms. We specifically implement and compare the epsilon-greedy bandit, upper confidence bound (UCB) bandit, and Q-learning algorithms to traditional methods such as K-Shortest Paths with First-Fit core and spectrum assignment (KSP-FF) and Shortest Path with First-Fit (SPF-FF) algorithms. Our results show that Q-learning significantly outperforms traditional methods, achieving a reduction in blocking probability (BP) of up to 58.8% over KSP-FF, and 81.9% over SPF-FF under lower traffic volumes. For higher traffic volumes, Q-learning maintains superior performance with BP reductions of 41.9% over KSP-FF and 70.1% over SPF-FF. These findings demonstrate the efficacy of reinforcement learning in enhancing network performance and resource utilization in dynamic and complex environments.
ISSN:2331-8422