Effect of Computer Simulations on Student Ability to Translate Chemical Representations When Learning the Particulate Nature of Matter Concept
The particulate nature of matter (PNM) concept poses a significant challenge for numerous students, primarily because it is abstract and difficult to visualize. Computer simulations (CSs) can aid students in visualizing microscopic particles using particle models. Despite the wide use of CSs in the...
Gespeichert in:
Veröffentlicht in: | Journal of chemical education 2024-10, Vol.101 (10), p.4149-4160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The particulate nature of matter (PNM) concept poses a significant challenge for numerous students, primarily because it is abstract and difficult to visualize. Computer simulations (CSs) can aid students in visualizing microscopic particles using particle models. Despite the wide use of CSs in the development of student understanding of the submicroscopic representation of particles, for topics such as PNM, additional representations such as macroscopic and symbolic representations are typically present, which add additional complexity. Facilitating students’ meaningful understanding of the PNM requires careful scaffolding to help them establish interconnections and transformations among different chemical representations. This study describes the development and testing of activities that use CSs to introduce PNM concepts. The findings revealed that CSs significantly enhanced middle school students’ proficiency in translating between various kinds of chemical representations when learning the PNM concept. Specifically, their competence in translating between macroscopic and submicroscopic representations was significantly improved, while their understanding of symbolic and submicroscopic representations was moderately improved. We hypothesize that engaging with CSs provides a more comprehensive particle model that incorporates diverse dimensions and offers students a modeling process. This study proposes implications for incorporating CSs during instruction and provides evidence-based support for how CSs could be useful in promoting chemical representations of topics related to the PNM. |
---|---|
ISSN: | 0021-9584 1938-1328 |
DOI: | 10.1021/acs.jchemed.4c00964 |