Enzyme Cascade with Four Enzymes in One Pot for the Synthesis of L‐Phosphinothricin

The biocatalytic oxidative deamination‐ reductive amination process for the production of L‐phosphinothricin (L‐PPT) from D,L‐phosphinothricin (D,L‐PPT) is a green and environmentally friendly approach with significant development potential. In this study, the adopted technological route involves th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2024-10, Vol.366 (19), p.4169-4177
Hauptverfasser: Xu, Jianmiao, Xi, Zhijie, Zhao, Keji, He, Chenxiang, Cheng, Feng, Xue, Yaping, Zheng, Yuguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biocatalytic oxidative deamination‐ reductive amination process for the production of L‐phosphinothricin (L‐PPT) from D,L‐phosphinothricin (D,L‐PPT) is a green and environmentally friendly approach with significant development potential. In this study, the adopted technological route involves the oxidative deamination of the D‐PPT component in D,L‐PPT to 2‐oxo‐4‐(hydroxymethylphosphinyl)butanoic acid (PPO) by utilizing D‐amino acid oxidase (DAAO), followed by the catalytic reductive amination of PPO to L‐PPT using phosphinothricin dehydrogenase (PpDH). In order to enhance the catalytic rate and reduce the inhibitory effect of the intermediate product PPO on the catalytic process, optimization of both oxidative deamination and reductive amination phases was conducted through separate strategies of constant‐pressure oxygen supply and substrate feeding, respectively. A “two‐step one‐pot” method was employed to link the optimized reactions, significantly shortening the production time. Furthermore, the “two‐step one‐pot” catalytic strategy was optimized, ultimately achieving a high 97.7% yield of L‐PPT with ee of L‐PPT>99.9% after 5.5 h of reaction under 800 mM D,L‐PPT catalytic conditions, D‐PPT and PPO could not bedetected in the reaction system, further enchanced the catalytic efficiency, production efficiency and product quality. The aforementioned results demonstrate that this proposed approach has great potential for industrial‐scale production of L‐PPT as well as significant competitive advantages in terms of economic feasibility.
ISSN:1615-4150
1615-4169
DOI:10.1002/adsc.202400498