Attractors for a class of wave equations with nonlocal structural energy damping

This paper is concerned with the well-posedness and long-time dynamics for a class of wave equations with a nonlocal structural energy damping. The main result establishes that for each exponent β ∈ ( 0 , 1 / 2 + ϵ ) of the structural term, for a small ϵ > 0 , the corresponding problem has a comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2024-11, Vol.31 (6), Article 114
Hauptverfasser: Bezerra, Flank D. M., Liu, Linfang, Narciso, Vando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the well-posedness and long-time dynamics for a class of wave equations with a nonlocal structural energy damping. The main result establishes that for each exponent β ∈ ( 0 , 1 / 2 + ϵ ) of the structural term, for a small ϵ > 0 , the corresponding problem has a compact global attractor A β , which coincides with the unstable manifold M β ( N ) emanating from the set N of stationary points. This class of problems whose dissipation intensity depends on the energy of the system has connection with flight structure models, see NASA-AirForce reports (Balakrishnan in A theory of nonlinear damping in flexible structures. Stabilization of flexible structures, 1988; Balakrishnan and Taylor in Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989).
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-024-01000-y