Direct proof of one-hook scaling property for Alexander polynomial from Reshetikhin-Turaev formalism

We prove that normalized colored Alexander polynomial (the \(A \rightarrow 1\) limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with the substitution \(q \rightarrow q^{|R|}\). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Morozov, Andrey, Popolitov, Aleksandr, Sleptsov, Alexei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that normalized colored Alexander polynomial (the \(A \rightarrow 1\) limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with the substitution \(q \rightarrow q^{|R|}\). The proof is simple and direct use of Reshetikhin-Turaev formalism to get all required R-matrices.
ISSN:2331-8422