Direct proof of one-hook scaling property for Alexander polynomial from Reshetikhin-Turaev formalism
We prove that normalized colored Alexander polynomial (the \(A \rightarrow 1\) limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with the substitution \(q \rightarrow q^{|R|}\). The...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that normalized colored Alexander polynomial (the \(A \rightarrow 1\) limit of colored HOMFLY-PT polynomial) evaluated for one-hook (L-shape) representation R possesses scaling property: it is equal to the fundamental Alexander polynomial with the substitution \(q \rightarrow q^{|R|}\). The proof is simple and direct use of Reshetikhin-Turaev formalism to get all required R-matrices. |
---|---|
ISSN: | 2331-8422 |