Highly Efficient and Cost-Effective Dual Quasi-Resonant Bidirectional DC/DC Converter

This article proposes a bidirectional dual quasi-resonant dc/dc converter (BQRC) that aims to achieve high efficiency and cost-effectiveness with a high-conversion ratio. When transferring the power in the backward direction, the existing converter with conventional switching modulation does not wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-12, Vol.71 (12), p.15618-15632
Hauptverfasser: Raheem, Hamid, Wagaye, Tsegaab Alemayehu, Jung, Jin-Woo, Kim, Minsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a bidirectional dual quasi-resonant dc/dc converter (BQRC) that aims to achieve high efficiency and cost-effectiveness with a high-conversion ratio. When transferring the power in the backward direction, the existing converter with conventional switching modulation does not work because single-diode rectification at the primary side disrupts the expected power flow mechanism. To solve this problem, the diagonal pairs of primary-side switches and secondary-side bidirectional switches were modulated complementarily with a fixed duty ratio of 0.5 and the secondary-side half-bridge switches with a variable duty ratio. This approach enables power delivery in the backward direction while achieving a high-conversion ratio, low-component count, and almost zero voltage switching turn-off, which makes the converter highly efficient and cost-effective. Furthermore, in this topology, no magnetizing current flows through the external resonant inductor during backward operation, so the core size of the resonant inductor can be reduced. Consequently, even though the primary-side and secondary-side circuit structures differ, symmetric operations are achieved for power flow in both directions. To demonstrate the viability of this approach, a 400-W prototype was designed and tested, capable of converting a 40-60-V input voltage to a 380-V output.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2024.3384579