Asymptotic Stability in the Critical Space of 2D Monotone Shear Flow in the Viscous Fluid
In this paper, we study the long-time behavior of the solutions to the two-dimensional incompressible free Navier Stokes equation (without forcing) with small viscosity ν , when the initial data is close to stable monotone shear flows. We prove the asymptotic stability and obtain the sharp stability...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2024-11, Vol.405 (11), Article 267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the long-time behavior of the solutions to the two-dimensional incompressible free Navier Stokes equation (without forcing) with small viscosity
ν
, when the initial data is close to stable monotone shear flows. We prove the asymptotic stability and obtain the sharp stability threshold
ν
1
2
for perturbations in the critical space
H
x
log
L
y
2
. Specifically, if the initial velocity
V
in
and the corresponding vorticity
W
in
are
ν
1
2
-close to the shear flow
(
b
in
(
y
)
,
0
)
in the critical space, i.e.,
‖
V
in
-
(
b
in
(
y
)
,
0
)
‖
L
x
,
y
2
+
‖
W
in
-
(
-
∂
y
b
in
)
‖
H
x
log
L
y
2
≤
ε
ν
1
2
, then the velocity
V
(
t
) stay
ν
1
2
-close to a shear flow (
b
(
t
,
y
), 0) that solves the free heat equation
(
∂
t
-
ν
∂
yy
)
b
(
t
,
y
)
=
0
. We also prove the enhanced dissipation and inviscid damping, namely, the nonzero modes of vorticity and velocity decay in the following sense
‖
W
≠
‖
L
2
≲
ε
ν
1
2
e
-
c
ν
1
3
t
and
‖
V
≠
‖
L
t
2
L
x
,
y
2
≲
ε
ν
1
2
. In the proof, we construct a time-dependent wave operator corresponding to the Rayleigh operator
b
(
t
,
y
)
Id
-
∂
yy
b
(
t
,
y
)
Δ
-
1
, which could be useful in future studies. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-024-05155-8 |