Adaptive feature selection for hyperspectral image classification based on Improved Unsupervised Mayfly optimization Algorithm
Hyperspectral imaging has appeared as a vital tool in remote sensing science for its efficacy in effectively delineating regions of interest. However, the classification of hyperspectral images (HSI) encounters notable challenges, including the high dimensionality of highly correlated bands and the...
Gespeichert in:
Veröffentlicht in: | Earth science informatics 2024-10, Vol.17 (5), p.4145-4159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperspectral imaging has appeared as a vital tool in remote sensing science for its efficacy in effectively delineating regions of interest. However, the classification of hyperspectral images (HSI) encounters notable challenges, including the high dimensionality of highly correlated bands and the scarcity of training samples. Addressing these challenges is very essential by determining the most relevant bands, as well as the utilization of unlabelled training samples. In response to these issues, this study presents an unsupervised framework based on an enhanced Mayfly Optimization Algorithm (MOA) in order to select the most informative spectral bands. The enhanced MOA effectively identifies informative bands by leveraging the random solutions to explore the global search space, and enhance the solution diversity. On the other hand, leveraging the best experiences to boost the local search, efficiently attaining optimal solutions. This balanced exploration-exploitation strategy ensures the algorithm’s robustness and effectiveness in addressing the optimization problem. Ultimately, the proposed approach is demonstrated at the pixel-level hyperspectral image classification using two machine learning classifiers: Random Forest and Support Vector Machine. Thorough experimentation carried out on three benchmark hyperspectral datasets consistently confirms the effectiveness of the proposed approach. |
---|---|
ISSN: | 1865-0473 1865-0481 |
DOI: | 10.1007/s12145-024-01378-4 |