Uniformly semi-rational simple groups
A finite group \(G\) is called uniformly semi-rational if there exists an integer \(r\) such that the generators of every cyclic sugroup \(\langle x \rangle\) of \(G\) lie in at most two conjugacy classes, namely \(x^G\) or \((x^r)^G\). In this paper, we provide a classification of uniformly semi-ra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite group \(G\) is called uniformly semi-rational if there exists an integer \(r\) such that the generators of every cyclic sugroup \(\langle x \rangle\) of \(G\) lie in at most two conjugacy classes, namely \(x^G\) or \((x^r)^G\). In this paper, we provide a classification of uniformly semi-rational non-abelian simple groups with particular focus on alternating groups. |
---|---|
ISSN: | 2331-8422 |