Uniformly semi-rational simple groups

A finite group \(G\) is called uniformly semi-rational if there exists an integer \(r\) such that the generators of every cyclic sugroup \(\langle x \rangle\) of \(G\) lie in at most two conjugacy classes, namely \(x^G\) or \((x^r)^G\). In this paper, we provide a classification of uniformly semi-ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
1. Verfasser: Vergani, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite group \(G\) is called uniformly semi-rational if there exists an integer \(r\) such that the generators of every cyclic sugroup \(\langle x \rangle\) of \(G\) lie in at most two conjugacy classes, namely \(x^G\) or \((x^r)^G\). In this paper, we provide a classification of uniformly semi-rational non-abelian simple groups with particular focus on alternating groups.
ISSN:2331-8422