Discrete Lorentz surfaces and s-embeddings I: isothermic surfaces
S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They po...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They posed the question whether there are s-embeddings that lift to maximal surfaces already at the discrete level, before taking the limit. This paper is the first in a two paper series, in which we answer that question in the positive. In this paper we introduce a correspondence between s-embeddings (incircular nets) and congruences of touching Lorentz spheres. This geometric interpretation of s-embeddings enables us to apply the tools of discrete differential geometry. We identify a subclass of s-embeddings -- isothermic s-embeddings -- that lift to (discrete) S-isothermic surfaces, which were introduced by Bobenko and Pinkall. S-isothermic surfaces are the key component that will allow us to obtain discrete maximal surfaces in the follow-up paper. Moreover, we show here that the Ising weights of an isothermic s-embedding are in a subvariety. |
---|---|
ISSN: | 2331-8422 |