Quantum Internet: Resource Estimation for Entanglement Routing
We consider the problem of estimating the physical resources required for routing entanglement along an arbitrary path in a quantum bipartite entanglement network based on first-generation quantum repeaters. This resource consumption is intimately linked with the purification protocol and the errors...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of estimating the physical resources required for routing entanglement along an arbitrary path in a quantum bipartite entanglement network based on first-generation quantum repeaters. This resource consumption is intimately linked with the purification protocol and the errors that it introduces due to experimental imperfections. We propose a novel way of accounting for experimental errors in the purification process, which offers the flexibility of accounting for a non uniform probability distribution over different kinds of errors. Moreover, we introduce a novel approach for computing a non-recursive estimation of the resource consumption and illustrate it specifically for our error treatment on a nested repeater protocol. This allows for a reduction in the time complexity of the computation required for the resource estimation, from linear in the required number of purification steps, to constant. Given the fragility and ultra-short lifespans of quantum information, this is especially crucial for an effective operation of a quantum network. The results demonstrate that the approximation works reasonably well over a wide-range of errors. |
---|---|
ISSN: | 2331-8422 |