Neural Quasiprobabilistic Likelihood Ratio Estimation with Negatively Weighted Data

Motivated by real-world situations found in high energy particle physics, we consider a generalisation of the likelihood-ratio estimation task to a quasiprobabilistic setting where probability densities can be negative. By extension, this framing also applies to importance sampling in a setting wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Drnevich, Matthew, Jiggins, Stephen, Katzy, Judith, Cranmer, Kyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by real-world situations found in high energy particle physics, we consider a generalisation of the likelihood-ratio estimation task to a quasiprobabilistic setting where probability densities can be negative. By extension, this framing also applies to importance sampling in a setting where the importance weights can be negative. The presence of negative densities and negative weights, pose an array of challenges to traditional neural likelihood ratio estimation methods. We address these challenges by introducing a novel loss function. In addition, we introduce a new model architecture based on the decomposition of a likelihood ratio using signed mixture models, providing a second strategy for overcoming these challenges. Finally, we demonstrate our approach on a pedagogical example and a real-world example from particle physics.
ISSN:2331-8422