Cohomology rings of oriented Grassmann manifolds \(\widetilde G_{2^t,4}\)
We give a description of the mod 2 cohomology algebra of the oriented Grassmann manifold \(\widetilde G_{2^t,4}\) as the quotient of a polynomial algebra by a certain ideal. In the process we find a Gr\"obner basis for that ideal, which we then use to exhibit an additive basis for \(H^*(\wideti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a description of the mod 2 cohomology algebra of the oriented Grassmann manifold \(\widetilde G_{2^t,4}\) as the quotient of a polynomial algebra by a certain ideal. In the process we find a Gr\"obner basis for that ideal, which we then use to exhibit an additive basis for \(H^*(\widetilde G_{2^t,4};\mathbb Z_2)\). |
---|---|
ISSN: | 2331-8422 |