Constrained Consensus-Based Optimization and Numerical Heuristics for the Few Particle Regime

Consensus-based optimization (CBO) is a versatile multi-particle optimization method for performing nonconvex and nonsmooth global optimizations in high dimensions. Proofs of global convergence in probability have been achieved for a broad class of objective functions in unconstrained optimizations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Beddrich, Jonas, Chenchene, Enis, nasier, Massimo, Huang, Hui, Wohlmuth, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consensus-based optimization (CBO) is a versatile multi-particle optimization method for performing nonconvex and nonsmooth global optimizations in high dimensions. Proofs of global convergence in probability have been achieved for a broad class of objective functions in unconstrained optimizations. In this work we adapt the algorithm for solving constrained optimizations on compact and unbounded domains with boundary by leveraging emerging reflective boundary conditions. In particular, we close a relevant gap in the literature by providing a global convergence proof for the many-particle regime comprehensive of convergence rates. On the one hand, for the sake of minimizing running cost, it is desirable to keep the number of particles small. On the other hand, reducing the number of particles implies a diminished capability of exploration of the algorithm. Hence numerical heuristics are needed to ensure convergence of CBO in the few-particle regime. In this work, we also significantly improve the convergence and complexity of CBO by utilizing an adaptive region control mechanism and by choosing geometry-specific random noise. In particular, by combining a hierarchical noise structure with a multigrid finite element method, we are able to compute global minimizers for a constrained \(p\)-Allen-Cahn problem with obstacles, a very challenging variational problem.
ISSN:2331-8422